A note on the first Zagreb index and coindex of graphs
Authors
Abstract:
Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zagreb coindex isdefined as $overline{M}_1(G)=sum_{insim j}(d_i+d_j)$. A couple of new upper and lower bounds for $M_1(G)$, as well as a new upper boundfor $overline{M}_1(G)$, are obtained.
similar resources
Note on Properties of First Zagreb Index of Graphs
Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.
full textOn the Multiplicative Zagreb Coindex of Graphs
Abstract. For a (molecular) graph G with vertex set V (G) and edge set E(G), the first and second Zagreb indices of G are defined as M1(G) = ∑ v∈V (G) dG(v) 2 and M2(G) = ∑ uv∈E(G) dG(u)dG(v), respectively, where dG(v) is the degree of vertex v in G. The alternative expression of M1(G) is ∑ uv∈E(G)(dG(u) + dG(v)). Recently Ashrafi, Došlić and Hamzeh introduced two related graphical invariants M...
full textnote on properties of first zagreb index of graphs
let g be a graph. the first zagreb m1(g) of graph g is defined as: m1(g) = uv(g) deg(u)2. in this paper, we prove that each even number except 4 and 8 is a first zagreb index of a caterpillar. also, we show that the fist zagreb index cannot be an odd number. moreover, we obtain the fist zagreb index of some graph operations.
full textOn the second order first zagreb index
Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...
full textOn the first variable Zagreb index
The first variable Zagreb index of graph $G$ is defined as begin{eqnarray*} M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}, end{eqnarray*} where $lambda$ is a real number and $d(v)$ is the degree of vertex $v$. In this paper, some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...
full textA note on hyper-Zagreb index of graph operations
In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].
full textMy Resources
Journal title
volume 6 issue 1
pages 41- 51
publication date 2021-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023